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ABSTRACT

Wirelesssensonetworksfor environmentaimonitoringhave
unusualcharacteristicand must meeta unique set of re-
guirements Dataratesareextremelylow, but limits on en-
ergy usageandtotal deploymentcostdominate. Probably
themostimportantmetricis the averageenegy requiredto
deliverabit of informationaboutthe sensearvironmentto
thedestination Thesenetworksalsodiffer from thegeneral
caseof ad-hocwirelessnetsin that connectvity between
two arbitrary nodesis not required,nor even desired;all
thatis neededs connectvity from eachsensorto a gate-
way or “home” node. This paperdescribesa methodology
for sourcecodingof ervironmentakensonetwork datathat
exploits correlationin temporaland spatialdomains. Our
approachis anadaptve two-level scheme Thefirst level is
model-baseth thatthetime seriesfrom asensois approxi-
matedby apolynomialfunction. Themetricfor thisapprox-
imationis theminimumnumberof bitsrequiredto represent
the approximatiorerrorfor the worst-caseadatapoint. The
secondevel exploits spatialcorrelationby allowing nodes
alongpathsfrom moredistantnodesto adoptmodelparam-
etersfrom fartherflung nodes,called codeseners,to fur-
therreduceredundany.

1. INTRODUCTION

The widespreaddeployment of large collectionsof wire-
lessly networked intelligent devices may be the next tech-
nology boom. One exampleof thesesystemghat hasre-
ceivedincreasingattentionis wirelesssensometworks. To
be successfulthe designof wirelesssensometworks must
carefully orchestratea numberof technologiespreviously
viewed as distinct, including wirelesscommunication,ad
hoc networking, and deeply embeddedeal-time comput-
ing systems.Driving interestin this areaare a numberof
compellingproblemsdistributedsurweillanceandtracking,
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monitoring of building and transportatiorsystems hazard
warning,andervironmentalsensing.

The particularapplicationthat we are targeting is the
minimally-invasive monitoring of microclimatevariables,
suchastemperaturehumidity and insolation(light inten-
sity). We areconstructingoothanarchitectureanda proof-
of-concepimplementationn collaboratiorwith aplantphys-
iologist anda communityecologist. Our overall goal is to
provide an orderof-magnitudeincreasen spatio-temporal
samplingperformancevertraditionalnon-netvworkedsens-
ing technologiesenablingsignificanimprovementsn mod-
elsthatwill ultimately forecastecosystendynamics. Our
primary objectvesare (i) to demonstrateéhe utility andef-
ficiengy of wirelesssensometworks for scientificdataac-
quisitionin supportof microclimate-relate@cologicaland
biologicalresearchand(ii) to developalgorithmsandtech-
nigquesthat canenablethe widespreadapplicationof wire-
lesssensometworking to this, aswell asother, problems.

2. WISARDNET ARCHITECTURE

In this study the benchmarksensortechnologythatwe are
usingis standalonelataloggeunits that have a low initial
cost but requirewired in situ datauploadsthat are inva-
sive andlaborintensive. (Anotherexisting solutionis wired
arraysof sensorswhich have even greaterervironmental
impactand scalepoorly.) Our wirelesssensometwork is
composef low-costintegratedsensingand communica-
tion nodescalled WISARDs (WirelessSensingand Relay
Devices)[1]. They sharesereral featureswith the Berke-
ley moteg[2, 3], includingthe useof anenegy-saving 8-bit
programmablemicrocontroller and communicationin the
902-928MHz ISM band. Our units consistof a two-board
stackof a processor/analomodule(“brains” board)anda
radiomodule.

Our WISARD brainsboardis built arounda Microchip
PIC16LF877microcontrollerclockedat 10 MHz, to which
we have interfacedexternalmemory Our boardscan be
populatedwith a differentcomplemenbf chipsdepending
on the application. For the sensorconfiguration,we in-



stall 128Kb of SRAM with a multiplexed address/dathus
to consere 1/O pins. For the gatavay (or network con-
troller) configuration,we install 16Mb of FLASH mem-
ory to supportbuffering andinterfacesto long-haullinks.
The PIC16LF877processoralso has a self-writable pro-
gramstorethatenableseconfigurabilitywithoutanexternal
auxiliary processonsusedin [2].

We have integratedboth dedicatecandgeneral-purpose
analoganddigital interfacehardware on our brainsboard
for avariety of sensorsFor the proof-of-concephetwork,
we supporttwo temperatureandtwo photodiode-baseih-
solation (light intensity) sensors. Our sensorshave been
designedn closecollaborationwith our scientistpartners:
for example,we have designedhermocoupledor temper
aturemonitoringthatinclude low-costanalogcircuitry for
real-timecold-junctioncalibration.Unlikethermistorbased
sensorasusedin [3], thermocoupledhiave a minimum of
massandresultanthermalinertia. This technologyis well-
suitedfor the micro-metapplicationsinceit will beableto
track transientshat may be a driver for behavior of a vari-
ety of speciesln addition,our sensor@redeployedoutside
the WISARD packageeliminatingtemporalartifacts(such
aslimitations on transientresponsejhat could resultfrom
internalmounting.Thebrainsboardalsosupportothersen-
sorsvia a general-purposanaloginput, a switchedpower
sourceandthe 1-Wire bus.

The WISARD radio boardusesa single-chipRF trans-
ceiver (TexasInstrumentsTRF9600A)with an FSK modu-
lator, andanRF amplifierwith usercontrolledoutputpower.
It alsohasan integratedsynthesizeproviding 230 Hz fre-
gueng resolutionthatenableslow frequeng hopping.Be-
causeheradiochipprovidesonly downcorversionandquad-
ratureFM pre-detectior{essentiallya frequeny detector),
we performreal-timesampling messageetectionframe/bit
timing acquisition,and noncoherentletectionusing soft-
wareresidentn themicrocontroller

A majorfocusof our effort hasbeenthestudyof enegy-
conservingMAC protocolsfor this application. Our ap-
proach[4] is basedon cross-layeinteractionaspartof the
design.We exploit routinginformationto enablethe estab-
lishmentof one-hopcliquesof nodeswho agreeon pseudo-
randommeetingtimes. This enablesextremelyhigh enegy
efficiency: a nodeawakensfor communicationlandhence
consumesgnegy) duringagivenslotonlyif it istimefor the
cligueto meet.We alsoexploit the capabilitiesof our PHY
layer, allowing cliquesto usepseudo-randomizedequeny
hopping patternsthus mitigating multiple-accessnterfer
enceaswell asfrequeny selectvity andexternalinterfer
ence.

In general,the enegy cost of a single instruction of
computationis ordersof magnitudelower thanthe costof
transmittingandreceving abit of information:in our hard-
wareimplementationthesefiguresare (on average)2.6 nJ

andasmuchas170 pJ, a communicatiorvs. computation
enegy costratio of over6 x 10%. Hence relativeto commu-
nication,computationatostsare almostnegligible, mean-
ing thatthe minimizationof total enegy costis essentially
tantamounto minimizingcommunicatiorcostonly. For ex-
ample,we areusingajoint bit detection/synchronizaticail-
gorithmthat performswithin 1 dB of maximum-likelihood
detection.

At theoutseof this project,we arguedthatanintegrated
designapproachat the circuit, system,and network levels
of abstractionwasrequired[1]. In thatspirit, our work at
the PHY layer builds on the extremely maturediscipline
of communicatiortheoryto minimize the enegy required
to successfullytransfera bit of information. At the MAC
layer, our designensureshat nodes’radios are activated
only whennecessarwith very high probability. We now
turnto thetaskof minimizingthenumberof bitsrequiredto
reconstructat a destinationnodethe information acquired
by a networkedarrayof sensors.

3. RELATED WORK

Researchn distributed sourcecoding hasre-avakenedin
the last few years,motivatedby two factors: the wireless
sensomnetwork applicationandthe celebratedlepian-Volf
existencetheorem[5] for powerful distributedsourcecod-
ing. The Slepian-WIf resultshows thatit is (asymptoti-
cally) possibleto encodetwo sourcesX andY with joint
entropy H(X,Y) in suchawaythatY needgo sendH (Y)
bitsand X needdo sendH (X |Y") bits, evenif X doesnot
know Y for the purpose®f coding.

The work of Ramchandrarand colleagueq6] tackles
theproblemvia aframework basedn channekoding. The
essentialdeais thedesignof groupcodeswith acosetstruc-
turethattakesadvantageof alimited amountof prior knowl-
edgeaboutthe correlationbetweenthe datastreams. Ser-
vetto [7] considerdattice codesin the contet of a spatial
“division-of-labor” model in which a network of routing
nodesconnectsanarrayof sensomodesto anarrayof des-
tinationnodes.In this model,collaborationbetweersensor
nodesof ary kind, andcollaboratiorbetweerroutingnodes
with respecto coding,is forbidden.

Asin [7], we considersamplinga spatio-temporallyly-
namicalsystemin this paper However, all of our nodescan
sensetransmit,andreceve, andthe goalis to forward the
sensednformationaboutthe systemto a commongatevay
nodefor uploading(mostlik ely over satelliteor cellularter-
restrialinfrastructure}o the ultimateuser e.g.,aninternet-
enableddatabase The pooling of informationat interme-
diate nodesforbiddenin [7] is exploited in our scheme:a
nodethat both sensesaand routesexplicitly determineghe
similarity betweerits dataanddatafrom nodeswhosedata
it forwards. The useof this knowledgecomesat very little



cost: asshawn earlier the enegy costratio of communi-
cationvs. computations enormousandthe additionalde-

lay may be small relative to the temporaldynamicsof the

sensedlata.Indeedwhile we have no proof, we conjecture
thatexploiting known “side” informationcanyield benefits
in termsof the complexity of thespatio-temporatodingal-

gorithmateachnode.

A critical aspecbf sourcecodingfor sensomnetworksis
thetrade-of betweerdelayandtheeffectivenesof coding.
In our targetapplicationwe canexpectontheorderof 10’s
of readingswithin aninterval of 1-3 hours. Our investiga-
tions have shavn that, whetherthe algorithmis adaptie or
not, theratio of alphabesize(i.e.,thenumberdistinctquan-
tizedsensowalues)to thefile sizeis largeenoughto render
naive approachegée.g.,Huffmanor dictionary-basedodes)
ineffective. In this application,short sequencesre com-
mon, andasymptoticallyoptimumapproachesanfalteras
aresult.

In ary sensometwherethe sensednformationmustbe
forwardedto amuchsmallermumberof gatevays,it is well-
known that nodescloserto the gatavaysaremorevulnera-
ble to enegy depletionduethethehigherinformationrates
they musthandle[8, 9]. For example,in a linear array of
sensorswith one gatevay and without sourcecoding, the
amountof traffic eachnodemusthandleincreaseginearly
(in thenumberof nodes)with proximity to thegatevay. The
objective of this work is to definea pragmaticstrateyy for
network-awvare sourcecoding that cansignificantly reduce
this, taking advantageof the spatio-temporatorrelationof
the senseddatato improve enegy efficiency and network
lifetime.

4. THE ALGORITHM

In our application,transmissiongrom the gatevay to the
internetwill typically occurat a lower rate thanthe sam-
pling ateachsensonode.A typical scenariavould involve
samplingthe ervironmentalvariablesevery 5 minutesand
uploadingto the internetevery hour or two. However, this
canvary: in ourtestdata,we considersoil temperatur¢ime
series cm below thesurface which normally have aband-
width of no morethan5 x 10=* Hz.

Our algorithmis model-basedh thatwe explicitly rec-
ognizethetemporakorrelationataparticuladocation.While
thiscorrelationcouldbemodeledisingahigh-ordeMarkov
chain,our modelis not basedon a prior probability distri-
bution, but ratherthe dynamicsof the process.It is adap-
tive at the secondlevel, since nodestest the similarity of
their datawith a certainsetof neighboringnodes’data,and
find the descriptionthatminimizesthe numberof additional
bitsrequiredto representheir data.This perrealizationap-
proachis essentiallysample-stared: attemptsto estimate
a (probabilistic) distribution are circumventedin favor of

directly minimizing the representatiorusing a (hopefully
good)model[10].

Eachnodebggins by fitting a low-orderpolynomialto
its data. As we will seethedatasrelatively low dynamics
imply thata zeroth-or first-orderpolynomialis often suffi-
cient. Theideahereis to capturethetrendof thedataatthat
location: it canbe viewed asa form of higherorderdelta
modulation,in which differencesare encoded. However,
herewe arelooking at a largerwindow of data,enablinga
morecompactrepresentation.

In this paper we limit oursehesto the losslesscase.
It canbe strongly amguedthat the measurementaloneare
noisy andthusamenabldo further, limited lossusingnet-
worked compression.However, our scientistcollaborators
would take little comfortin knowing thatthe wirelesscon-
nectvity that so easeghe logistics of datacollectionalso
canresultin alossof accurag.

Our criterionfor choosinghe polynomialcoeficientsis
notthe usualsumof squarecderrorscriterion. In view of the
shorttime seriego betransmittedye electto encodeliffer-
encesbetweerthe datapointsandthe polynomialmodelin
fixed-lengthfields, sincethe alternatize involvessignificant
overhead.Henceour objective in choosingthe polynomial
coeficientsis to minimizethe maximumnumberof bitsre-
quiredto representlifferencesetweerthe datapointsand
the polynomial. This is currently beingimplementedus-
ing an exhaustve searchinitialized usingthe least-squares
coeficients. Thefinal temporallyencodedpackageof data
consistsof the polynomial coeficients, the field width (in
bits) of the differencedata,andthe differencedata.

We positthatthe differenceof the datapointsfrom the
polynomialrepresentatiomrisefrom effectsthat arevary-
ing in their locality. Specificto eachnodeare errorsdue
to intrinsic sensomoiseand micro-metvariationsat scales
finer thanthe spatialsamplingrate of the sensorgrid. In
general variationsoccuracrossscales so that somevaria-
tionsareglobal,causingnetwork-widecommondifferences
dueto the low-orderfit. In betweenaredynamicsthatare
local to physicalneighborhood®f sensomodes. For this
reasoneachnodescoeficientsrepresenalocalview of the
global scene.This view's validity normally increaseswith
proximity to its location;on the otherhand,two nodesmay
bein similarlocal environmentge.g.,shady) but separated
by multiple hops. Hencecorrelationmay not be a function
of distance(either physicalor numberof hops), and this
shouldbe accommodateéh a spatio-temporasourcecod-
ing algorithm.

With this in mind, we turn to the spatialportion of our
codingscheme In our schemeterminalnodes—thos¢hat
needonly senseandtransmittheir data,anddon’t needto
route datafrom other nodes—donot executethis phase.
However, nodesthatroutein additionto sensingshould use
their computationapower to reducethe numberof bits re-



quiredto forward a packagethat includesits dataaswell
asthatof fartherflung (from the gatevay) nodesthatroute
throughit to the gateavay. We invert first-glanceintuition
andreferto thesenodesasits code servers.

Eachrouter nodefirst usesthe sametemporalcoding
algorithm as usedby terminal nodes,with the additional
stepof computingthe numberof bits requiredto represent
its data. Together thesetwo stepscompriseits view of
the sceneindependendf othernodesanda measuref the
communicatiorcostof thatview. The nodethenfindsthe
numberof bits requiredto representts dataasdifferences
from the dataof eachof its codeseners. (This requiresde-
codingof its codeseners’ data,which we discussshortly)
It then simply choosesthe representatiorthat minimizes
the numberof additionalbits requiredto representts data
alongwith the dataof its codeseners. Normally, the node
will often selectone of the senersas a reference;on the
otherhand,if therearesignificantspatialvariations,it can
fall back to its independentiiew. In this way, the algo-
rithm adaptgo spatialcorrelationor decorrelatioron aper
realizationbasis.

Implementatiorof the algorithmfor a routernodecan
be describedoy an example. Supposehe nodeundercon-
siderationis arouternoden, 1 < n < N, in alineararray
of N sensorsvherenodel is the gatavay. Then,its code
senersconsistof all nodesm > n fartheraway from the
gatevay. The decodingof its codeseners’ datais recur
sive: node(n + 1)’s datamay be encodedas differences
from noden + 2, etc. However, the recursve decodingis
straightforvard, andthe completecodingalgorithmcanbe
accomplishedvell within the boundsdictatedby the com-
munication/computatioenegy costratio.

We mentionecdearlierhow perrealizationsimilarity be-
tweentime seriesmaynotbe afunctionof eitherthe physi-
cal distanceor the numberof hops.Within thelimits of net-
work routing, the algorithmallows a nodeto referenceary
of its fartherflung (i.e., outboundirom the gatavay nodes),
thusallowing nodesto exploit pocketsof similarity in data
from codesenersthatmaybe physicallydispersed.

5. EXPERIMENTAL RESULTS

To evaluateour algorithm,we usedarchived dataacquired
using corventional dataloggersby the NAU Pifion Ecol-
ogy ResearchGroup (http://pinyon.bio.nau.ed) at Sunset
CraterNational Monumentapproximately20 miles north-
eastof Flagstaf, AZ. The ecosystemis pifion pine (pinus
edulis) and juniper (juniperusmonospermayoodland, at
approximately6000ft elevation. Someof the pifion pines
have beenattacledby scaleandmothinsects.Thescalecan
causesignificantdefoliation,andthe moth changeghetree
structurepothof theseeffectsmaycausechangesn thesoil
temperatureThis, in turn, may effect soil moisturecontent

andnutrientcycling processes.

As describedearlier no codingimplies that the num-
ber of bits to be transmittedandrecevedincreasest least
linearly with proximity (in numberof hops)to the gate-
way. If we assumdor the momentthatthetime seriesfrom
all sensorareidentical,thenthe terminalnodeis the only
codesener, anda performanceaipperboundfor ary spatio-
temporalcodingschemeavould beaconstanhumberof bits
equalto theentropy of theterminalnode(this equalityis ex-
tremelycrudegiventhe non-probabilisticviewpoint driven
by the shorttime serieslength). In practice,this implies a
slightlinearincreasevith numberof hopsdueto theneces-
saryoverheadequiredfor eachnodeto pointto theterminal
nodesinformation.

From the SunsetCraterdatawe selectedsoil tempera-
turetime seriesfrom sensorscatterecapproximatelyl5 m
apartandabout5 cm below the surface;theraw time series
shaving the diurnal variation over a three day period are
plottedin Figurel. We chosea relatively linear portion of
the seriesover anapproximatelyl2 hour periodfor further
studyasseenin Figure2. Compressiomesultsfor the Sun-
setCraterdataareshavnin Figure3, wherewe have plotted
the cumulative numberof bits thatarerequiredto betrans-
mittedateachsensomasafunctionof thenumberof hops.In
this experimentwe usedfirst-ordermodels.Becausef the
distancedetweerthe sensorandresultingdissimilarity of
thetime seriesthegainsaremodest.In fact,in this dataset
eachsensorchoosests own polynomial modelbecauset
providesbettercompressiorthanusingary other’s model.
HenceFigure3 providesanindicationof thetemporalcod-
ing gainthatcanbeachieved.

In orderto estimatethe potentialspatial-temporatod-
ing gain, we createda syntheticdatasetfrom the Sunset
Craterdataby defining virtual nodeswhosedatawas in-
terpolatecbetweeradjacenhodesin the actualdata. Then
we modeledsensorspecificnoiseandmicro-meteorological
variationsby addinga small Gaussian-distribted random
variateto eachinterpolatedvalue. This datais shown in
Figure 4. In this case,a spatialcoding gain occurssince
nodeschoosecodesenersotherthanthemseles. As seen
in Figure5, thecombinedspatio-temporatodinggainis ap-
proximately33%,ascomparedo 20%for datain Figures2
and 3.

6. CONCLUSION

This paperconsiderghe sourcecodingof spatio-temporally
correlatedervironmentalsensordatafor transmissiorto a
sensonetwork gatevay. In thisapplication timelinesscon-
straintsoftenimply thereportingof shorttime series]imit-
ing the effectivenessof probabilisticand dictionary-based
approaches.On the other hand, the enepy efficiengy of
computatiorrelative to that of wirelesscommunicatiorar
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Figurel. Raw sensodata;soil temperatur@sa functionof
time for six locationsover athreeday period.

guesstrongly for approacheshat can provide somecom-

pression. This paperproposesa losslesscodingtechnique
thatexploitsthejoint sensing/routinglutiesof sensonodes.
It is model-basedn the temporaldomain,using a simple
polynomialapproximation.It is adaptve in the spatialdo-

mainin thatanodecanconsiderary of its codeseners(in-

cludingitself) andchoosethe onethatyields the bestcom-

pressionfor its time series. Our resultsindicate that the

algorithmyieldsreasonableesultsthatimprove asthe data
similarity increases.
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